
VideoRay Communication Protocol

 Version 1.05

 Preamble:

Pre-PRO-4 VideoRay ROV use a simple 2 packet communication protocol for external host control of

the vehicle. The host is responsible for transmitting a single control packet, and the ROV responds

with a single response packet. This protocol is documented in Pro3_PC.doc.

While the PRO3 protocol is very easy for a host to implement and is near optimal with respect to

thruster control response time it has some drawbacks:

1) Does not allow for easy expansion to control new devices. (there are some free bits in the

control packet)

2) Does not allow for additional data response. Only two 16-bit words are sent back, these can be

multiplexed to provide additional data. There is an additional reserved “type” byte.

3) Is not terribly multi party tolerant. Packets are not checksummed, there is no addressing, etc.

4) Is a completely custom protocol which does not leverage external devices

A new communication protocol has been implemented to overcome the above issues, while at the same

time maintaining the low control latencies inherent in the PRO3 protocol. The design goals for the

new protocol:

1) Packetized

2) Addressable (individual and groups)

3) Checksum protection of packet header and data payload

4) Easy to implement on memory constrained devices

5) Allow minimal control latencies

6) Prefer a small set of commands

7) Leverage external devices where possible

8) Allow for external device control with/without an ROV in the loop

9) Stateless parsing of response packets (all info is in the packet, the host does not need to

remember what packets it has sent)

The PRO4 ROV system makes it easy to hang additional devices on it's primary tether communication

bus as well as a secondary peripheral bus. The physical layer for both of these buses is RS-485 (see

http://en.wikipedia.org/wiki/EIA-485). Examples of the types of devices which will be connected to

the various buses are:

1) PRO 4 ROV (possible more than one on the same bus)

2) Lights

3) KCF Smart Tether Nodes

4) Pan/Tilt Cameras

5) Various Manipulators

6) Additional Thruster Packets (Omni-directional)

7) Custom Sensor Packs (Radiation Detector, cathodic protection probe, etc.)

8) Altimeters

The PRO4 protocol is essentially a slightly modified version of the protocol used by the Futaba

RS301CR/RS302CD servo motors. The PRO4 protocol should be able to exist on the same physical

bus as any device which conforms to either the PRO4 or the Futaba protocol. Devices which do not

conform may require a protocol converter to interface safely.

The PRO4 protocol is a hybrid Control and Status Register (CSR) Architecture. This maintains the

spirit of the Futaba protocol and also has the added benefit of being compact and scalable across

disparate devices.

A CSR Architecture essentially implements each end device as a memory map of registers. Data can be

written into these registers and/or retrieved from them. A special register can be defined to accept

arbitrary commands, if a more traditional command/response system is desired.

The PRO4 protocol can be considered a hybrid since the response packets may or may not consist of

contiguous memory mapped locations. This allows for bandwidth saving as multiple packets are not

required for non- contiguous locations.

The fact that the protocol is a CSR architecture means that an host program developer will require a

memory map for the device to be controlled in addition to the protocol specification.

The protocol is also not inherently bi-directionally routeable There is only a destination id in the

packet header. It is assumed that either having fully routeable packets is unnecessary, or provisions

will be made in device firmware for intelligently routing of packets, or an embedded extension could

be used.

The protocol while being size symmetric (packet header is the same size in both directions) the

protocol is not semantically symmetric. In particular the first bytes of the payload data in response

packets indicate a device type.

PRO4 Communication Protocol:

 Physical Layer:

RS-485, Half-duplex. 115200, 8, N, 1.

Biasing and termination may depended upon application.

While the protocol is PHY agnostic. The described physical layer has been standardized on the PRO4

and various new accessories.

 Packet Format:

The PRO4 packet consists of a 7 byte header, arbitrary length payload data, and a final checksum.

The length of the payload is restricted by the fact that the length is a single byte. Larger data packets

can be handled by packetization or extending the protocol. Although longer packets are strongly

discouraged as they will degrade overall system latency.

PRO4 packet, each field is a single 8-bit byte.

Start of

Packet

(Byte 1)

Start of

Packet

(Byte 2)

Network

ID

Flags

*

CSR

Address

Length Header

Checksum

*

Payload

Data**

Total

Checksum

*indicates usage is significantly different than Futaba protocol.

**The first byte(s) in the Payload Data of a response packet is a VideoRay designated device type

descriptor.

 Synchronization:

The protocol uses two bytes for a start of packet synchronization.

These bytes are Identical to those used in the Futaba protocol.

There are essentially two types of packets, requests and response packets.

0xFDDF are response packets.

Request: 0xFAAF

Response: 0xFDDFFDDFFDDFFDDF

Some semantics of the header fields changed dependent upon the packet being a response or not.
For example in response packets the Network IDNetwork IDNetwork IDNetwork ID field is the responding device's id, otherwise it is the
id of the destination device.

 Network ID: Network ID: Network ID: Network ID:

This is destination of the target device(s) for request packet.

This is the Node ID of the transmitting device for a response packet.

Network ID's can be in the range of 0 to 127 (0x0 – 0x7F) in order to individually address devices.

The destination can also be 128-254 (0x80 – 0xFE) in order to perform a group device multicast.
Classes of devices will be given individual group codes. This allows for up to 126 groups.

The destination can also be 255 (0xFF) which indicates a broadcast to all connected devices.

In summary:n summary:n summary:n summary:

0x1 0x1 0x1 0x1 ---- 0x7F 0x7F 0x7F 0x7F Individual Device NODE IDIndividual Device NODE IDIndividual Device NODE IDIndividual Device NODE ID
0x800x800x800x80 ---- 0xFE 0xFE 0xFE 0xFE Group multicastGroup multicastGroup multicastGroup multicast
0xFF0xFF0xFF0xFF Full BroadcastFull BroadcastFull BroadcastFull Broadcast

Devices should not send any response to multicast or broadcast packets.
The exception is the Device Enumeration request discussed below.

Device ID 0 should NEVER be used, as this would cause conflicts with Futaba servos incorrectly
parsing packets as LONG packets.

 FLAGS:FLAGS:FLAGS:FLAGS:

The FLAGS byte is used as a bit field to designate the type of response requested.

The Futaba protocol allocates the bits in the FLAG byte in a specific manner. This protocol differs
from that definition.

0x000x000x000x00 No response packetNo response packetNo response packetNo response packet
0x010x010x010x01----0x7F0x7F0x7F0x7F Device Specific Packet Type (Defined by device developer, may be cardinal number or a Device Specific Packet Type (Defined by device developer, may be cardinal number or a Device Specific Packet Type (Defined by device developer, may be cardinal number or a Device Specific Packet Type (Defined by device developer, may be cardinal number or a
 bit field)bit field)bit field)bit field)
0x800x800x800x80----0xFF0xFF0xFF0xFF ConConConContiguous Data starting at CSR Address low 7 bits indicate length of data to returntiguous Data starting at CSR Address low 7 bits indicate length of data to returntiguous Data starting at CSR Address low 7 bits indicate length of data to returntiguous Data starting at CSR Address low 7 bits indicate length of data to return

So in essence if the msb is set then flag bit can be masked to get the length of desired response data.
(length = flag_byte & 0x7F;) An 0x80 indicates that all data from CSR address to the end of the device
CSR register file (address 0xEF) should be sent.

A Flag of 0x80 should NOT in general be used to read data above the device specific CSR (0xF0 and
up) since there are multiple special length registers. However it is standard practice use a flag of 0x80
when reading the entire CONFIGURATION DATA register.

A response to a Contiguous read always has 0x80 in the FLAGS byte.

 CSR Address:CSR Address:CSR Address:CSR Address:

The address field in a device specific response is set to 0x0.

This field identifies the 8-bit address of the device memory map register.

It is recommended that all devices use a little endian (lsb in lowest address) This matches futaba, and
what the AVR compilers seem to prefer.

For packets that write or read multiple bytes, the CSR Address designates the start address.

10 addresses (0xF0 – 0xFF) are reserved for device independent use.

0x00x00x00x0----
0xEF0xEF0xEF0xEF Device Specific Memory MapDevice Specific Memory MapDevice Specific Memory MapDevice Specific Memory Map

0xF0 0xF0 0xF0 0xF0 Custom Command Register. Data sent to this register is interpreted as a multiCustom Command Register. Data sent to this register is interpreted as a multiCustom Command Register. Data sent to this register is interpreted as a multiCustom Command Register. Data sent to this register is interpreted as a multi----byte byte byte byte
 command, and notcommand, and notcommand, and notcommand, and not a CSR memory r/w. It is intended that this address be used for a CSR memory r/w. It is intended that this address be used for a CSR memory r/w. It is intended that this address be used for a CSR memory r/w. It is intended that this address be used for
 devices which wish to implement a command type protocol rather than a CSR protocol.devices which wish to implement a command type protocol rather than a CSR protocol.devices which wish to implement a command type protocol rather than a CSR protocol.devices which wish to implement a command type protocol rather than a CSR protocol.
 For example a PRO3 emulation mode would use this address. See embedding external For example a PRO3 emulation mode would use this address. See embedding external For example a PRO3 emulation mode would use this address. See embedding external For example a PRO3 emulation mode would use this address. See embedding external
 protocols below.protocols below.protocols below.protocols below.

0xF1 0xF1 0xF1 0xF1 ---- 0xF4 0xF4 0xF4 0xF4 Unallocated ReservedUnallocated ReservedUnallocated ReservedUnallocated Reserved
0xF50xF50xF50xF5----0xF60xF60xF60xF6 CONFIGURATION DATA SIZECONFIGURATION DATA SIZECONFIGURATION DATA SIZECONFIGURATION DATA SIZE
0xF7 CONFIGURATION DATA REGISTER0xF7 CONFIGURATION DATA REGISTER0xF7 CONFIGURATION DATA REGISTER0xF7 CONFIGURATION DATA REGISTER
0xF8 0xF8 0xF8 0xF8 ---- 0xFA 0xFA 0xFA 0xFA Software VersionSoftware VersionSoftware VersionSoftware Version
0xFB Node ID0xFB Node ID0xFB Node ID0xFB Node ID (0(0(0(0----127)127)127)127)
0xFC0xFC0xFC0xFC Group IDGroup IDGroup IDGroup ID (1(1(1(1----126)126)126)126)
0xFD0xFD0xFD0xFD UNIQUE ID REGISITER (SEE BELOW) An 16 byte UNIQUE ID REGISITER (SEE BELOW) An 16 byte UNIQUE ID REGISITER (SEE BELOW) An 16 byte UNIQUE ID REGISITER (SEE BELOW) An 16 byte register for reads and 17 bytes register for reads and 17 bytes register for reads and 17 bytes register for reads and 17 bytes
 for writesfor writesfor writesfor writes

0xFE0xFE0xFE0xFE Reboot register LSBReboot register LSBReboot register LSBReboot register LSB Write 0xDE to rebootWrite 0xDE to rebootWrite 0xDE to rebootWrite 0xDE to reboot
0xFF0xFF0xFF0xFF Reboot register MSB Write 0xAD to rebootReboot register MSB Write 0xAD to rebootReboot register MSB Write 0xAD to rebootReboot register MSB Write 0xAD to reboot

The registers above 0xF7, 0xFD, 0xFE, 0xFF tend to be “special” and are not meant to be accessed by
general contiguous reads and writes.

It is intended that each of the “special” registers are only ever written to individually.

Writing the pattern 0xdead to the addresses 0xFE-0xFF causes the device to reboot after a suitable
delay. The reboot sequence should be written in a single transmission packet, starting at address
0xFE:

Example Reboot Packet:Example Reboot Packet:Example Reboot Packet:Example Reboot Packet:
0xFA 0xAF 0x01 0x00 0xFE 0x2 0xA8 0xDE 0xAD 0x730xFA 0xAF 0x01 0x00 0xFE 0x2 0xA8 0xDE 0xAD 0x730xFA 0xAF 0x01 0x00 0xFE 0x2 0xA8 0xDE 0xAD 0x730xFA 0xAF 0x01 0x00 0xFE 0x2 0xA8 0xDE 0xAD 0x73
A write of the word 0xdead to the addresses 0xFDA write of the word 0xdead to the addresses 0xFDA write of the word 0xdead to the addresses 0xFDA write of the word 0xdead to the addresses 0xFD----0xFD with no response requested.0xFD with no response requested.0xFD with no response requested.0xFD with no response requested.

The Configuration Data includes the BootloaderID data and any Hardware configuration data.
This is typically stored in EEPROM on the device.

A read of the UNIQUE ID Register returns the device identification. This is primarily used during
device enumeration (see below). But can be read at anytime. This register contains factory
configured identification such as serial number and model number. A read is always <=16 bytes

A write to the UNIQUE ID register allows for the setting of the Node ID. This Node ID can be set
either with a write to the Node ID register or with a write to the UNIQUE ID register. When setting
the Node ID via a write to the UNIQUE ID register 17 bytes should be written. The first 16 bytes
should match the value returned by a read of the UNIQUE ID register (the actual device ID) followed
by the desired Node ID.. It is envisioned that a broadcast write to the UNIQUE ID register would be
used to set node ID's when multiple devices are on the bus.

 Length:Length:Length:Length:

This is the length of the data payload. The count of bytes between the Header Checksum and the total
checksum.

A length of 255 (0xFF) is reserved to indicate an extended length packet.

A length if 0 (0x0) indicates that the request packet is a read only packet. A packet with FLAGS==0
and Length==0 while syntactically valid, makes no sense.

 Extended Length Packets:Extended Length Packets:Extended Length Packets:Extended Length Packets:

Packets larger than the standard size (254 bytes) are marked with 0xFF in the header length byte
field.

The actual data payload length is contained in two bytes after the header checksum. The Extended
Length word is sent LSB first.

These two length bytes are followed by a checksum byte. The standard payload data follows. The
checksum is calculated in the same manner as the other checksums, it is the XOR of the Extended
Length word.

PRO4 extended length packet, each field is a single 8-bit byte.

Start of

Packet

(Byte 1)

Start of

Packet

(Byte 2)

Network

ID

Flags

*

CSR

Address

Length Header

Checksum

*

Extended

Length

(LSB)

Extended

Length

(MSB)

Extended

Length

Checksum

Payload

Data**

Total

Checksum

*indicates usage is significantly different than Futaba protocol.
**The first byte(s) in the Payload Data of a response packet is a VideoRay designated device type
descriptor.

 Header Checksum:

This is the XOR checksum of all six bytes from the first start byte to the length byte inclusive.

In the Futaba protocol this is the Count byte which indicates the number of servos being written to via
a long command. This byte is always 1 for a short command. Only short commands can be used
where possible when the Futaba protocol is being used on the same physical bus.

 Payload data:

This is either the data to be written to the device or data sent as a response. As such it is highly context

dependent's. It is recommended that all data transmitted is always little endian (least significant byte

first)

Payload data in the initiating packet (I.e from a host to a device) can always be considered a write. In

the common case the payload data represents data which should be written into the device memory map

starting at the CSR Address, and continuing for length bytes.

The Payload data in the request packets are just the data to be written. There is no additional meta data

included.

The Payload data in the response packets is prepended with a device type identifier. If this byte is 0xFF

then the second byte is the extended device type identifier, and so on. Device type identifiers are

issued by VideoRay LLC.

See appendix for current list of designated device types.

 Total Checksum/Payload Checksum:

This is the bitwise XOR of ALL bytes from the first start byte to the last payload data byte inclusive.

This matches the Futaba checksum byte exactly.

Note: This is also just the checksum of the Data Payload since the first 6 bytes of the header XOR with

the header checksum is 0.

 Protocol:Protocol:Protocol:Protocol:

 Device Enumeration: NOT IMPLEMENTED YETDevice Enumeration: NOT IMPLEMENTED YETDevice Enumeration: NOT IMPLEMENTED YETDevice Enumeration: NOT IMPLEMENTED YET

It is desired for a facility to exist where a host can automatically enumerate all attached devices in a
short period of time.

Upon power-up devices which support automatic enumeration will transmit their enumeration data.
The enumeration data is equivalent to a response packet from memory map addresses 0xFB, 0xFC,
0xFD. The length of the data payload for this packet is 18 bytes.

To minimize collisions during enumeration the device will attempt to generate a random number upon
power up (either through a seed recorded in non-volatile memory, or using the lsb of some adc channel
to generate a random seed). The device will use this random number to determine a transmit time,
bounded between 0.5 and 2 seconds. The device will update this time on each transmission,
essentially randomizing it's unprompted communication. The device will update this time upon
detecting any communication on the bus. The device will cease transmission upon ANY write to it's
specific UNIQUE ID Register.

This randomized transmission protocol should also be used when a broadcast enumeration request is
made (a packet requesting data from any address between 0xFB-0xFD inclusive)

It is possible that devices developed by external developers may not support device enumeration. In
this case the device developer should specify some mechanism for detecting devices and setting their
nodal id's.

 Typical Usage:Typical Usage:Typical Usage:Typical Usage:

In typical usage the host will send a request packet to the device. If the LENGTH is greater than 0
they bytes in the PAYLOAD DATA will be written into the device registers.

The FLAG byte is set in the requesting packet to inform the device as to what data should be sent
back as a reply. If the value of the FLAG byte is less than 0x80 then it's meaning is device dependent.

If it is greater than or equal to 0x80 then the response is essentially a memory dump of the device
memory map space.

EXAMPLES:

To Be Added

 Encapsulating ExternalEncapsulating ExternalEncapsulating ExternalEncapsulating External Protocols: Protocols: Protocols: Protocols:

In order to make it easier on external device developers provisions have been made to easily
encapsulate an existing protocol.

The CSR Address 0xF0 has been reserved for command encapsulation. Any Data Payload written or
read from this address is assumed to be an encapsulated protocol.

The FLAGS byte should be set at 0x80 for encapsulated packets.

The standard Network ID should be used where applicable. If an ID is embedded in the custom
protocol then a Network ID of 0xFF is permissible, although system testing to insure that there is no
conflict between different devices is required.

The first byte in the PAYLOAD Data of the response is not required to be a VideoRay designated
Device type. However it would be preferable if devices would conform to this convention.

VideoRay Designated Device Types:VideoRay Designated Device Types:VideoRay Designated Device Types:VideoRay Designated Device Types:

ALL Device types are defined in protocol_pro4_device_types.hALL Device types are defined in protocol_pro4_device_types.hALL Device types are defined in protocol_pro4_device_types.hALL Device types are defined in protocol_pro4_device_types.h

